Arterial pulsatile hemodynamic load induced by isometric exercise strongly predicts left ventricular mass in hypertension.
نویسندگان
چکیده
Although resting hemodynamic load has been extensively investigated as a determinant of left ventricular (LV) hypertrophy, little is known about the relationship between provoked hemodynamic load and the risk of LV hypertrophy. We studied central pressure-flow relations among 40 hypertensive and 19 normotensive adults using carotid applanation tonometry and Doppler echocardiography at rest and during a 40% maximal voluntary forearm contraction (handgrip) maneuver. Carotid-femoral pulse wave velocity (CF-PWV) was measured at rest. Hypertensive subjects demonstrated various abnormalities in resting and induced pulsatile load. Isometric exercise significantly increased systemic vascular resistance, aortic characteristic impedance (Zc), induced earlier wave reflections, increased augmentation index, and decreased total arterial compliance (TAC; all P < or = 0.01). In hypertensive subjects, CF-PWV was the strongest resting predictor of LV mass index (LVMI) and remained an independent predictor after adjustment for age, gender, systemic vascular resistance, reflection magnitude, aortic Zc, and TAC (beta = 2.52 m/s; P < 0.0001). Age, sex, CF-PWV, and resting hemodynamic indexes explained 48% of the interindividual variability in LVMI. In stepwise regression, TAC (beta = -17.85; P < 0.0001) during handgrip, Zc during handgrip (beta = -150; P < 0.0001), and the change in the timing of wave reflections during handgrip (beta = -0.63; P = 0.03) were independent predictors of LVMI. A model that included indexes of provoked hemodynamic load explained 68% of the interindividual variability in LVMI. Hemodynamic load provoked by isometric exercise strongly predicts LVMI in hypertension. The magnitude of this association is far greater than for resting hemodynamic load, suggesting that provoked testing captures important arterial properties that are not apparent at rest and is advantageous to assess dynamic arterial load in hypertension.
منابع مشابه
TRANSLATIONAL PHYSIOLOGY Arterial pulsatile hemodynamic load induced by isometric exercise strongly predicts left ventricular mass in hypertension
Julio A. Chirinos, Patrick Segers, Amresh Raina, Hassam Saif, Abigail Swillens, Amit K. Gupta, Raymond Townsend, Anthony G. Emmi, Jr., James N. Kirkpatrick, Martin G. Keane, Victor A. Ferrari, Susan E. Wiegers, and Martin G. St. John Sutton University of Pennsylvania, and Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania; and Biofluid, Tissue and Solid Mechanics for Medic...
متن کاملEffective arterial elastance is insensitive to pulsatile arterial load.
Effective arterial elastance (E(A)) was proposed as a lumped parameter that incorporates pulsatile and resistive afterload and is increasingly being used in clinical studies. Theoretical modeling studies suggest that E(A) is minimally affected by pulsatile load, but little human data are available. We assessed the relationship between E(A) and arterial load determined noninvasively from central...
متن کاملLink of nonhemodynamic factors to hemodynamic determinants of left ventricular hypertrophy.
Despite current evidence suggesting that hemodynamic load is the fundamental stimulus to begin the sequence of biological events leading to the development of left ventricular hypertrophy, genotype, gender, body size, and less easily recognizable environmental factors may contribute to generate the cascade of molecular changes that eventually yield the increase in protein synthesis needed to in...
متن کاملResistive and pulsatile arterial load as predictors of left ventricular mass and geometry: the multi-ethnic study of atherosclerosis.
Arterial load is composed of resistive and various pulsatile components, but their relative contributions to left ventricular (LV) remodeling in the general population are unknown. We studied 4145 participants enrolled in the Multi-Ethnic Study of Atherosclerosis, who underwent cardiac MRI and radial arterial tonometry. We computed systemic vascular resistance (SVR=mean arterial pressure/cardia...
متن کاملAssociations of Alterations in Pulsatile Arterial Load With Left Ventricular Longitudinal Strain.
BACKGROUND Increased arterial stiffness leads to increased pulsatile load on the heart. We investigated associations of components of pulsatile load with a measure of left ventricular (LV) systolic function-global longitudinal strain (GLS), in a community-based cohort ascertained based on family history of hypertension. METHODS Arterial tonometry and echocardiography with speckle tracking wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 298 2 شماره
صفحات -
تاریخ انتشار 2010